首页> 高等继续教育大学生在线> 成考动态 > 正文

成考专升本高数二知识点和复习技巧

成考报名已经开启啦(成考报名官网),很多同学都在备考了。成考专升本高数二是很多考生头疼的科目,不知道应该怎么复习,下面小编就带大家一起看看成考专升本高数二复习技巧和知识点。

成考专升本高数二复习技巧

1.根据考试大纲制定学习计划

成人高考的试卷命题和考试内容都是由成人高考考试大纲决定的,我们在进行高数二科目的学习和复习时,也要时刻围绕着考试大纲中列出的知识点进行,这样有助于我们抓住考试重点,节省复习时间;另外,我们也要制定详细的学习的计划,并严格遵守,千万不要三天打渔两天晒网。

2.准备学习资料并认真运用

成人高考专升本高数二的备考中,学习资料很重要,同学们可以自己购买一些辅导教材或网课,从中吸收自己不是很理解的知识,并跟从老师进行学习,站在巨人的肩膀上学习,总比我们自己去攻克难关要快速的多。此外,高数二的很多题目都有固定的解题技巧,我们跟随教材和辅导资料去学习,能达到事半功倍的效果。

3.重点知识重点记忆,抓大放小

成人高考专升本高数二的知识点说多不多,但是对于我们数学基础比较薄弱的同学们来说,在几个月的时间内全部学通显然是有一些困难的,这种情况下就要求我们掌握重点知识和常考的知识点,偏题难题我们是可以适当放弃不进行学习的。

4.注重练习题的积累

在我们的学习过程中,同学们一定要注意进行适当练习题的解题和积累,准备一个错题本,随时复习自己对知识掌握不牢固的地方,争取能达会的都对,会的一分不丢。

成考专升本高数二知识点

一、极限和连续

(一)极限

1.知识范围 数列极限的概念和性质

(1)数列数列极限的定义唯一性有界性四则运算法则夹逼定理,单调有界数列极限存在定理

(2)函数极限的概念和性质 函数在一点处极限的定义,左、右极限及其与极限的关系 χ趋于无穷(χ→∞,χ→+∞, χ→-∞)时函数的极限函数极限的几何意义 唯一性 四则运算法则 夹逼定理

(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较。

(4)两个重要极限

sin x lim x = 1 x →0

1 lim 1 + x = e x →∞x

2.要求

(1)了解极限的概念(对极限定义中“ε—N”“ε—δ”“ε—M”的描述不作要求)。掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系, 会进行无穷小量阶的比较(高阶、低阶、同阶和等价) 。会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

(二)连续

1.知识范围

(1)函数连续的概念 函数在一点处连续的定义 左连续和右连续 函数在一点处连续的充分必要条件 函数的 间断点

(2)函数在一点处连续的性质 连续函数的四则运算 复合函数的连续性

(3)闭区间上连续函数的性质 有界性定理 最大值与最小值定理 介值定理(包括零点定理)

(4)初等函数的连续性

2.要求

(1) 理解函数在一点处连续与间断的概念, 理解函数在一点处连续与极限存在之间的关系,掌握函数(含分段函数)在一点处的连续性的判断方法。

(2)会求函数的间断点。

(3)掌握在闭区间上连续函数的性质,会用它们证明一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用函数的连续性求极限。

二、一元函数微分学

(一)导数与微分

1.知识范围

(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义可导与连续的关系

(2)导数的四则运算法则与导数的基本公式

(3)求导方法 复合函数的求导法 隐函数的求导法 对数求导法

(4)高阶导数 高阶导数的定义 高阶导数的计算

(5)微分 微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性

2.要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点 处的导数。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

(4)掌握隐函数的求导法与对数求导法。会求分段函数的导数。

(5)了解高阶导数的概念,会求简单函数的高阶导数。

(6)理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)导数的应用

1.知识范围

(1) 洛必达(L′Hospital)法则

(2) 函数增减性的判定法

(3) 函数极值与极值点最大值与最小值

(4) 曲线的凹凸性、拐点

(5) 曲线的水平渐近线与铅直渐近线

2.要求

(1)熟练掌握用洛必达法则求“

0 ∞ ” “ ” “0∞” “∞—∞”型未定式的极限的方法。0 ∞

(2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增 减性证明简单的不等式。

(3)理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法, 会求解简单的应用问题。

(4)会判定曲线凹凸性,会求曲线的拐点。

(5)会求曲线的水平渐近线与铅直渐近线。

三、一元函数积分学

(一)不定积分

1.知识范围

(1)不定积分 原函数与不定积分的定义 不定积分的性质

(2)基本积分公式

(3)换元积分法 第一换元法(凑微分法) 第二换元法

(4)分部积分法

(5)一些简单有理函数的积分

2.要求

(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限形如

2 2 2 2 。∫ a x dx、 a + x dx 的三角代换与简单的根式代换) ∫

(4)熟练掌握不定积分的分部积分法

(5)掌握简单有理函数不定积分的计算。

(二)定积分

1.知识范围

(1)定积分的概念 定积分的定义及其几何意义可积条件

(2)定积分的性质

(3)定积分的计算 变上限的定积分牛顿—莱布尼茨(Newton—Leibniz)公式换元积分法分部积分法

(4)无穷区间的广义积分、收敛、发散、计算方法

(5)定积分的应用 平面图形的面积、旋转体的体积

2.要求

(1) 理解定积分的概念与几何意义,了解可积的条件。

(2) 掌握定积分的基本性质

(3) 理解变上限的定积分是上限的函数,掌握对变上限定积分求导数的方法。

(4) 熟练掌握牛顿—莱布尼茨公式

(5) 掌握定积分的换元积分法与分部积分法。

(6) 理解无穷区间广义积分的概念,掌握其计算方法。

(7) 掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成 旋转体的体积。

四、多元函数微分学

1.知识范围

(1)多元函数 多元函数的定义 二元函数的定义域 二元函数的几何意义

(2)二元函数的极限与连续的概念

(3)偏导数与全微分 一阶偏导数 二阶偏导数 全微分

(4)复合函数的偏导数 隐函数的偏导数

(5)二元函数的无条件极值和条件极值

2.要求

(1)了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。

(2)了解二元函数的极限与连续的概念。

(3)理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握 二元函数的二阶偏导数的求法,掌握二元函数全微分的求法。

(4)掌握复合函数与隐函数的一阶偏导数的求法。

(5)会求二元函数的无条件极值和条件极值。

(6)会用二元函数的无条件极值及条件极值求解简单的实际问题。

五、概率论初步

1.知识范围

(1)事件及其概率 随机事件 事件的关系及其运算 概率的古典型定义 概率的性质 条件概率事件的独立性

(2)随机变量及其概率分布 随机变量的概念 随机变量的分布函数 离散型随机变量及其概率分布

(3)随机变量的数字特征 离散型随机变量的数学期望 方差 标准差

2.要求

(1) 了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。

(2) 掌握事件之间的关系:包含关系、相等关系、互不相容(或互斥)关系及对立关系。

(3) 理解事件之间并(和) 、交(积) 、差运算的定义,掌握其运算规律。

(4) 理解概率的古典型定义;掌握事件概率的基本性质及事件概率的计算。

(5) 会求事件的条件概念;掌握概率的乘法公式及事件的独立性。

(6) 了解随机变量的概念及其分布函数。

(7) 理解离散型随机变量的定义及其概率分布,掌握概率分布的计算方法。

(8) 会求离散型随机变量的数学期望、方差和标准差。

1
意向表
2
学习中心老师电话沟通
3
查看评估报告
1、年龄阶段

18~23周岁

24~32周岁

33~40周岁

其他

2、当前学历

高中及以下

中专

大专

其他

3、提升学历目标

工作就业

报考公务员

落户/居住证

其他

4、意向学习方式

自学考试

成人高考

开放大学

报考所在地
*
*
*
已阅读并同意
《用户服务协议》

111
授权院校
×
关闭
编辑推荐

1、凡标注中国教育在线原创文章,转载请注明出处中国教育在线及本文链接。

2、本文链接:https://www.eol.cn/ceici/e2-chengkao-219523.shtml

3、如果你希望被中国教育在线报道,请发邮件到jijiao@eol.cn告诉我们。

免责声明:

1、 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。

2、本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

相关资讯

专题指导

`